Stem cell factor receptor induces progenitor and natural killer cell-mediated cardiac survival and repair after myocardial infarction.
نویسندگان
چکیده
Inappropriate cardiac remodeling and repair after myocardial infarction (MI) predisposes to heart failure. Studies have reported on the potential for lineage negative, steel factor positive (c-kit+) bone marrow-derived hematopoetic stem/progenitor cells (HSPCs) to repair damaged myocardium through neovascularization and myogenesis. However, the precise contribution of the c-kit signaling pathway to the cardiac repair process has yet to be determined. In this study, we sought to directly elucidate the mechanistic contributions of c-kit+ bone marrow-derived hematopoetic stem/progenitor cells in the maintenance and repair of damaged myocardium after MI. Using c-kit-deficient mice, we demonstrate the importance of c-kit signaling in preventing ventricular dilation and hypertrophy, and the maintenance of cardiac function after MI in c-kit-deficient mice. Furthermore, we show phenotypic rescue of cardiac repair after MI of c-kit-deficient mice by bone marrow transplantation of wild-type HSPCs. The transplanted group also had reduced apoptosis and collagen deposition, along with an increase in neovascularization. To better understand the mechanisms underlying this phenotypic rescue, we investigated the gene expression pattern within the infarcted region by using microarray analysis. This analysis suggested activation of inflammatory pathways, specifically natural killer (NK) cell-mediated mobilization after MI in rescued hearts. This finding was confirmed by immunohistology and by using an NK blocker. Thus, our investigation revealed a previously uncharacterized role for c-kit signaling after infarction by mediating bone marrow-derived NK and angiogenic cell mobilization, which contributes to improved remodeling and cardiac function after MI.
منابع مشابه
Are Stem Cells the next Therapeutic Tool for Heart Repair?
Cardiovascular disease remains the leading cause of morbidity and mortality in the United States and Europe. In recent years, the understanding that regenerative processes exist at the level of the myocardium, has placed stem cell research at center stage in cardiology. A stem cell is a cell that has the ability to divide (self replicate) for indefinite periods often throughout the life of the ...
متن کاملStem cell factor gene transfer promotes cardiac repair after myocardial infarction via in situ recruitment and expansion of c-kit+ cells.
RATIONALE There is growing evidence that the myocardium responds to injury by recruiting c-kit(+) cardiac progenitor cells to the damage tissue. Even though the ability of exogenously introducing c-kit(+) cells to injured myocardium has been established, the capability of recruiting these cells through modulation of local signaling pathways by gene transfer has not been tested. OBJECTIVE To d...
متن کاملINHIBITION OF WNT3A DIMINISHED ANGIOGENIC DIFFERENTIATION CAPACITY OF RAT CARDIAC PROGENITOR CELLS
Background & Aims: Myocardial infarction is a leading cause of human mortality in industrialized and developing societies. Limited restorative ability of of cardiomyocytes after ischemic changes can causes extensive damage lead to prominent chronic heart failure. At present, the application of certain drugs is touted as one of the main available approaches to inhibit the spread of the lesion an...
متن کاملCathepsin-L contributes to cardiac repair and remodelling post-infarction.
AIMS Cathepsin-L (CTSL) is a member of the lysozomal cysteine protease family, which participates in remodelling of various tissues. Herein, we sought to examine the potential regulation of CTSL in cardiac remodelling post-infarction. METHODS AND RESULTS Experimental myocardial infarction (MI) was created in CTSL-deficient (Ctsl(-/-)) mice (B6 × FSB/GnEi a/a Ctsl(fs)/J) and wild-type litterma...
متن کاملTherapeutic angiogenesis promotes efficacy of human umbilical cord matrix stem cell transplantation in cardiac repair
Objective(s):Although previous studies have confirmed the beneficial effects of human umbilical cord matrix stem cell (hUCM) transplantation post myocardial infarction (MI), but this stem cell resource has no potential to induce angiogenesis. In order to achieve the process of angiogenesis and cardiomyocyte regeneration, two required factors for cardiac repair agents were examined namely; hUCM ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 7 شماره
صفحات -
تاریخ انتشار 2006